Abstract
Intelligence is highly heritable and a major determinant of human health and well-being. Recent genome-wide meta-analyses have identified 24 genomic loci linked to intelligence, but much about its genetic underpinnings remains to be discovered. Here, we present the largest genetic association study of intelligence to date (N=279,930), identifying 206 genomic loci (191 novel) and implicating 1,041 genes (963 novel) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and identify 89 nonsynonymous exonic variants.
***Associated genes are strongly expressed in the brain and specifically in striatal medium spiny neurons and cortical and hippocampal pyramidal neurons. Gene-set analyses implicate pathways related to neurogenesis, neuron differentiation and synaptic structure. We confirm previous strong genetic correlations with several neuropsychiatric disorders, and Mendelian Randomization results suggest protective effects of intelligence for Alzheimer’s dementia and ADHD, and bidirectional causation with strong pleiotropy for schizophrenia.***
These results are a major step forward in understanding the neurobiology of intelligence as well as genetically associated neuropsychiatric traits.